Lyapunov-Krasovskii stability analysis of nonlinear integro-differential equation
نویسندگان
چکیده
منابع مشابه
Stability analysis of fractional-order nonlinear Systems via Lyapunov method
In this paper, we study stability of fractional-order nonlinear dynamic systems by means of Lyapunov method. To examine the obtained results, we employe the developed techniques on test examples.
متن کاملNonlinear Cable equation, Fractional differential equation, Radial point interpolation method, Meshless local Petrov – Galerkin, Stability analysis
The cable equation is one the most fundamental mathematical models in the neuroscience, which describes the electro-diffusion of ions in denderits. New findings indicate that the standard cable equation is inadequate for describing the process of electro-diffusion of ions. So, recently, the cable model has been modified based on the theory of fractional calculus. In this paper, the two dimensio...
متن کاملAbout stability of a difference analogue of a nonlinear integro-differential equation of convolution type
A nonlinear integro-differential equation of convolution type with order of nonlinearity more than one and a stable trivial solution is considered. The integral in this equation has an exponential kernel and polynomial integrand. The difference analogue of the equation considered is constructed in the form of a difference equation with continuous time and it is shown that this difference analog...
متن کاملApplication of Legendre operational matrix to solution of two dimensional nonlinear Volterra integro-differential equation
In this article, we apply the operational matrix to find the numerical solution of two- dimensional nonlinear Volterra integro-differential equation (2DNVIDE). Form this prospect, two-dimensional shifted Legendre functions (2DSLFs) has been presented for integration, product as well as differentiation. This method converts 2DNVIDE to an algebraic system of equations, so the numerical solution o...
متن کاملNumerical Solution of a Nonlinear Integro-Differential Equation
An algorithm for the numerical solution of a nonlinear integro-differential equation arising in the single-species annihilation reaction A + A → ∅ modeling is discussed. Finite difference method together with the linear approximation of the unknown function is considered. For divergent integrals presented in the equation for dimension d = 2 a regularization is used. Some numerical results are p...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International Journal of Applied Mathematical Research
سال: 2018
ISSN: 2227-4324
DOI: 10.14419/ijamr.v7i2.10168